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    Abstract- Big data is the term for any collection of data 
sets so large and complex that it becomes difficult to process 
using traditional data processing applications. The challenges 
include analysis, capture, curation, search, sharing, storage, 
transfer, visualization, and privacy violations. The trend to 
larger data sets is due to the additional information derivable 
from analysis of a single large set of related data, as compared 
to separate smaller sets with the same total amount of data, 
allowing correlations to be found to "spot business trends, 
prevent diseases, combat crime and so on." Big data is 
difficult to work with using most relational database 
management systems and desktop statistics and visualization 
packages, requiring instead "massively parallel software 
running on tens, hundreds, or even thousands of servers". Big 
data usually includes data sets with sizes beyond the ability of 
commonly used software tools to capture, curate, manage, and 
process data within a tolerable elapsed time. Big data "size" is 
a constantly moving target, as of its  ranging from a few dozen 
terabytes to many petabytes of data. Big data is a set of 
techniques and technologies that require new forms of 
integration to uncover large hidden values from large datasets 
that are diverse, complex, and of a massive scale. Big data 
environment is used to acquire, organize and analyze the 
various types of data.There is an observation about Map 
Reduce framework that framework generates large amount of 
intermediate data. Therefore, as well as the tasks finishes 
there is need of throwing that abundant data, because 
MapReduce is unable to utilize them. 
 
  Index Terms- Big data, Hadoop, HDFS, MapReduce, Pig, 
Hive, Hbase, 
 

I.INTRODUCTION 
1. WHAT IS BIG DATA? 
We create 2.5 quintillion bytes of data — so much that 90% 
of the data in the world today has been created in the last 
two years alone. This much amount of data comes from 
everywhere: sensors used to gather climate information, 
posts to social media sites, digital pictures and videos, 
purchase transaction records, and cell phone GPS signals to 
name a few. This huge amount of the data is known as “Big 
data”[14]. Big data is a buzzword, or catch-phrase, utilizes 
to describe a massive volume of both structured and 
unstructured data that is so huge that it's complicated to 
process using traditional database and software techniques. 
In most enterprise scenarios the data is too large or it 
moves too fast or it exceeds current processing capacity. 
Big data has the potential to help organizations to improve 
operations and make faster, more intelligent decisions[15]. 
Big Data, now a days this term becomes common in IT 
industries. As there is a huge amount  of data lies in the 
industry but there is nothing before big data comes into 
picture [3]. Big data is actually an evolving term that 

describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be 
mined for information. Although big data doesn't refer to 
any specific quantity, so this term is often used when 
speaking about petabytes and exabytes of data[16]. Big 
data is an all-encompassing term for large collection of the 
data sets so this huge and complex that it becomes difficult 
to operate them using traditional data processing 
applications. When dealing with larger datasets, 
organizations face difficulties in being able to create, 
manipulate, and manage big data. Big data is particularly a 
problem in business analytics because standard tools and 
procedures are not designed to search and analyze massive 
datasets. 
An example of big data might be petabytes (1,024 
terabytes) or exabytes (1,024 petabytes) of data consisting 
of billions to trillions of records of millions of people—all 
from different sources (e.g. Web, sales, customer contact 
center, social media, mobile data and so on). The data is 
typically loosely structured data that is often incomplete 
and inaccessible[15]. 
The challenges include analysis, capture, curation, search, 
sharing, storage, transfer, visualization, and privacy 
violations. The trend to larger data sets is due to the 
additional information derivable from analysis of a single 
large set of related data, as compared to separate smaller 
sets with the same total amount of data, allowing 
correlations to be found to "spot business trends, prevent 
diseases, combat crime and so on"[10].Scientists regularly 
encounter limitations due to large data sets in many areas, 
including meteorology, genomics, connectomics, complex 
physics simulations, and biological and environmental 
research. The limitations also affect Internet search, finance 
and business informatics. Data sets grow in size in part 
because they are increasingly being gathered by ubiquitous 
information-sensing mobile devices, aerial sensory 
technologies (remote sensing), software logs, cameras, 
microphones, radio-frequency identification (RFID) 
readers, and wireless sensor networks. The world's 
technological per-capita capacity to store information has 
roughly doubled every 40 months since the 1980s;as of 
2012, every day 2.5 exabytes (2.5×1018) of data were 
created. The challenge for large enterprises is determining 
who should own big data initiatives that straddle the entire 
organization. 
Big data defined as far back as 2001, industry analyst 
Doug Laney (currently with Gartner) articulated the now 
mainstream definition of big data as the three Vs of big 
data: volume, velocity and variety [18]. Big data can be 
characterized by welknown  3Vs: the extreme volume of 
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data, the wide variety of types of data and the velocity at 
which the data must be must processed. Although big data 
doesn't refer to any specific quantity, the term is often used 
when speaking about petabytes and exabytes of data, much 
of which cannot be integrated easily. [16] 

 
                                    Fig. 1.1 3V’s factors of Big Data 
 

 Volume. Many factors contribute to the increase 
in data volume. Transaction-based data stored 
through the years. Unstructured data streaming in 
from social media. Increasing amounts of sensor 
and machine-to-machine data being collected. In 
the past, excessive data volume was a storage 
issue. But with decreasing storage costs, other 
issues emerge, including how to determine 
relevance within large data volumes and how to 
use analytics to create value from relevant 
data.fig.1.1 

 Velocity. Data is streaming in at unprecedented 
speed and must be dealt with in a timely manner. 
RFID tags, sensors and smart metering are driving 
the need to deal with torrents of data in near-real 
time. Reacting quickly enough to deal with data 
velocity is a challenge for most 
organizations.fig.1.1 

 Variety. Data today comes in all types of formats. 
Structured, numeric data in traditional databases. 
Information created from line-of-business 
applications. Unstructured text documents, email, 
video, audio, stock ticker data and financial 
transactions. Managing, merging and governing 
different varieties of data is something many 
organizations still grapple with.fig.1.1 

We consider two additional dimensions when thinking 
about big data: 

 Variability. In addition to the increasing 
velocities and varieties of data, data flows can be 
highly inconsistent with periodic peaks. Is 
something trending in social media? Daily, 
seasonal and event-triggered peak data loads can 
be challenging to manage. Even more so with 
unstructured data involved. 

 Complexity. Today's data comes from multiple 
sources. And it is still an undertaking to link, 
match, cleanse and transform data across systems. 
However, it is necessary to connect and correlate 

relationships, hierarchies and multiple data 
linkages or your data can quickly spiral out of 
control [17]. 

Data storage has grown significantly, shifting makedly 
from analog to digital after 2000 fig.1.2        
         

 
Fig. 1.2 Data storage growth graph 
 

Big Data, the analysis of huge quantities of data to gain 
new insight has become a ubiquitous phrase in recent years. 
As we know that day by day the data is growing at a 
staggering rate. One of the efficient well-known 
technologies that deal with the Big Data is Hadoop [6]. 
 
2. Hadoop: 
Hadoop was created by Doug Cutting and Mike Cafarella in 
2005. Doug Cutting, who was working at Yahoo! at the 
time, named it after his son's toy elephant. It was originally 
developed to support distribution for the Nutch search 
engine project. Hadoop is open-source software that 
enables reliable, scalable, distributed computing on clusters 
of inexpensive servers[1]. 
Hadoop is: 

 Reliable: The software is fault tolerant, it expects 
and handles hardware and software failures 

 Scalable: Designed for massive scale of 
processors, memory, and local attached storage 

 Distributed: Handles replication. Offers massively 
parallel programming model, Map Reduce 
 

 
         Fig 2.1 Hadoop system 
 

Hadoop is an Open Source implementation of a large-scale 
batch processing system. That use the Map-Reduce 
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framework introduced by Google  by leveraging the 
concept of map and reduce functions that well known used 
in Functional Programming. Although the Hadoop 
framework is written in Java, it allows developers to deploy 
custom-written programs coded in Java or any other 
language to process data in a parallel fashion across 
hundreds or thousands of commodity servers. It is 
optimized for contiguous read requests(streaming reads), 
where processing includes of scanning all the data. 
Depending on the complexity of the process and the 
volume of data, response time can vary from minutes to 
hours. While Hadoop can processes data fast, so its key 
advantage is its massive scalability [20].  
Hadoop is currently being used for index web searches, 
email spam detection, recommendation engines, prediction 
in financial services, genome manipulation in life sciences, 
and for analysis of unstructured data such as log, text, and 
clickstream. While many of these applications could in fact 
be implemented in a relational database(RDBMS)fig 2.1, 
the main core of the Hadoop framework is functionally 
different from an RDBMS. The following discusses some 
of these differences Hadoop is particularly useful when: 

 Complex information processing is needed 
 Unstructured data needs to be turned into 

structured data 
 Queries can’t be reasonably expressed using SQL 
 Heavily recursive algorithms 
 Complex but parallelizable algorithms needed, 

such as geo-spatial analysis or genome sequencing 
 Machine learning 
 Data sets are too large to fit into database RAM, 

discs, or require too many cores (10’s of TB up to 
PB) 

 Data value does not justify expense of constant 
real-time availability, such as archives or special 
interest info, which can be moved to Hadoop and 
remain available at lower cost 

 Results are not needed in real time 
 Fault tolerance is critical 
 Significant custom coding would be required to 

handle job scheduling 
Hadoop was inspired by Google's MapReduce, a software 
framework in which an application is broken down into 
numerous small parts. Any of these parts (also called 
fragments or blocks) can be run on any node in the cluster. 
Doug Cutting, Hadoop's creator, named the framework 
after his child's stuffed toy elephant. The current Apache 
Hadoop ecosystem consists of the Hadoop kernel, 
MapReduce, the Hadoop distributed file system (HDFS) 
and a number of related projects such as Apache Hive, 
HBase and Zookeeper. The Hadoop framework is used by 
major players including Google, Yahoo and IBM, largely 
for applications involving search engines and advertising. 
The preferred operating systems are Windows and Linux 
but Hadoop can also work with BSD and OS X [21]. 
A distributed file system is a client/server-based application 
that allows clients to access and process data stored on the 
server as if it were on their own computer. A distributed 
file system is a client/server-based application that allows 
clients to access and process data stored on the server as if 

it were on their own computer. When a user accesses a file 
on the server, the server sends the user a copy of the file, 
which is cached on the user's computer while the data is 
being processed and is then returned to the server. Ideally, a 
distributed file system organizes file and directory services 
of individual servers into a global directory in such a way 
that remote data access is not location-specific but is 
identical from any client. All files are accessible to all users 
of the global file system and organization is hierarchical 
and directory-based[2].  

Since more than one client may access the same 
data simultaneously, the server must have a mechanism in 
place (such as maintaining information about the times of 
access) to organize updates so that the client always 
receives the most current version of data and that data 
conflicts do not arise. Distributed file systems typically use 
file or database replication (distributing copies of data on 
multiple servers) to protect against data access 
failures[4].Sun Microsystems' Network File System 
(NFS)[21],Novell NetWare, Microsoft's Distributed File 
System, and IBM/Transarc's DFS are some examples of 
distributed file systems. 

 
II.  HDFS 

The Hadoop Distributed File System (HDFS) is the file 
system component of the Hadoop framework[13]. HDFS is 
designed and optimized to store data over a large amount of 
low-cost hardware in a distributed fashion. 

 
       Fig.3.1 HDFS architecture 

Name Node : 
Name node is a type of the master node, which is 
having the information that means  meta data about the 
all data node there is address(use to talk ), free space, data 
they store, active data node , passive data node, task  
tracker, job tracker and many other configuration such as 
replication of data [3]. 
The NameNode records all of the metadata, attributes, and 
locations of files and data blocks in to  the DataNodes. The 
attributes it records are the things like file permissions, file 
modification and access times, and namespace, which is a 
hierarchy of files and directories. The NameNode maps the 
namespace tree to file blocks in DataNodes. When a client 
node wants to read a file in the HDFS it first contacts the 
Namenode to receive the location of the data blocks 
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associated with that file [27]. 
A NameNode stores information about the overall system 
because it is the master of the HDFS with the DataNodes 
being the slaves. It stores the image and journal logs of the 
system. The image of the system is a list of blocks and 
data for each file stored in the HDFS. The journal is just a 
modification log of the image. The NameNode must 
always store the most up to date image and journal. 
Basically, the NameNode always knows where the data 
blocks and replicates are for each file and it also knows 
where the free blocks are in the system so it keeps track of 
where future files can be written. 
 
Data Node:  
Data node is a type of slave node in the hadoop, which is 
used to save the data  and there is  task tracker in data 
node which is use to track on the ongoing job on the data 
node and the jobs which coming from name node[3]. 
The DataNodes store the blocks and block replicas of the 
file system. During startup each DataNode connects and 
performs a handshake with the NameNode. The DataNode 
checks for the accurate namespace ID, and if not found 
then the DataNode automatically shuts down. New 
DataNodes can join the cluster by simply registering with 
the NameNode and receiving the namespace ID [27]. Each 
DataNode keeps track of a block report for the blocks in its 
node. Each DataNode sends its block report to the 
NameNode every hour so that the NameNode always has 
an up to date view of where block replicas are located in 
the cluster.During the normal operation of the HDFS, each 
DataNode also sends a heartbeat to the NameNode every 
ten minutes so that the NameNode knows which 
DataNodes are operating correctly and are available. If 
after ten minutes the NameNode doesn’t receive a 
heartbeat from a DataNode then the NameNode assumes 
that the DataNode is lost and begins creating replicas of 
that DataNode’s lost blocks on other DataNodes. The nice 
thing about the HDFS architecture is that the NameNode 
doesn’t have to reach out to the DataNodes, it instead waits 
for the DataNodes to send their block reports and 
heartbeats to it. The NameNode can receive thousands of 
DataNode’s heartbeats every second and not adversely 
affect other NameNode operations [27]. 
Apache Hadoop is an open-source software framework for 
distributed storage and distributed processing of Big Data 
on clusters of commodity hardware. Its Hadoop 
Distributed File System (HDFS) splits files into large 
blocks (default 64MB or 128MB) and distributes the 
blocks amongst the nodes in the cluster. For processing the 
data, the Hadoop Map/Reduce ships code (specifically Jar 
files) to the nodes that have the required data, and the 
nodes then process the data in parallel. This approach takes 
advantage of data locality, in contrast to conventional HPC 
architecture which usually relies on a parallel file system 
(compute and data separated, but connected with high-
speed networking). 
The base Apache Hadoop framework is composed of the 
following modules: 

 Hadoop Common – contains libraries and utilities 
needed by other Hadoop modules. 

 Hadoop Distributed File System (HDFS) – a 
distributed file-system that stores data on 
commodity machines, providing very high 
aggregate bandwidth across the cluster. 

 Hadoop MapReduce – a programming model for 
large scale data processing. 

All the modules in Hadoop are designed with a 
fundamental assumption that hardware failures (of 
individual machines, or racks of machines) are common 
and thus should be automatically handled in software by 
the framework. Apache Hadoop's MapReduce and HDFS 
components originally derived respectively from Google's 
MapReduce and Google File System (GFS) 
papers."Hadoop" often refers not to just the base Hadoop 
package but rather to the Hadoop Ecosystem fig.3.2, 
which includes all of the additional software packages that 
can be installed on top of or alongside Hadoop, such as 
Apache Hive, Apache Pig and Apache Spark. 

 
         Fig. 3.2 Hadoop Ecosystem 
 

III. MAP REDUCE FRAMEWORK 
Map Reduce is a software framework for distributed 
processing of large data sets on computer clusters.  It is first 
developed by Google .Map Reduce is intended to facilitate 
and simplify the processing of vast amounts of data in 
parallel on large clusters of commodity hardware in a 
reliable, fault-tolerant manner [4]. 
MapReduce is the key algorithm that the Hadoop 
MapReduce engine uses to distribute work around a cluster. 
Typical Hadoop cluster integrates MapReduce and HFDS 
layer. In MapReduce layer job tracker assigns tasks to the 
task tracker.Master node job tracker also assigns tasks to 
the slave node task tracker fig.4.1 

 
Fig. 4.1 Map reduce is based on the Maser-Slave architecture 
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Master node contains - 
 Job tracker node (MapReduce layer)  
 Task tracker node (MapReduce layer)  
 Name node (HFDS layer)  
 Data node (HFDS layer)  

Multiple slave nodes contain - 
 Task tracker node (MapReduce layer)  
 Data node (HFDS layer)  
 MapReduce layer has job and task tracker nodes  
 HFDS layer has name and data nodes  

 
Single JobTracker per master is responsible for scheduling 
the jobs’ component tasks on the slaves .It monitors slave 
progress. It also re-executing failed tasks .As well as single 
TaskTracker per slave execute the tasks as directed by the 
master.Map reduce core functionality is based on the Map 
phase and reduce phase. Code usually written in Java- 
though it can be written in other languages with the Hadoop 
Streaming API. 
  
A. Map Reduce core functionality(I): 
In this functionality Map and Reduce pieces are playing 
vital role. 
I. Map step  
In this Map phase the Master node takes large problem 
input and slices it into smaller sub problems; distributes 
these to worker nodes.Worker node may do this again; 
leads to a multi-level tree structure .Worker processes 
smaller problem and hands back to master  
A map transform is provided to transform an input data row 
of key and value to an output key/value:  

 map(key1,value) -> list<key2,value2>  
That is, for an input it returns a list containing zero or more 
(key,value) pairs:  

 The output can be a different key from the input  
 The output can have multiple entries with the 

same key  
 II. Reduce step:  
In this Reduce phase Master node takes the answers to the 
sub problems and combines them in a predefined way to 
get the output/answer to original problem  
A reduce transform is provided to take all values for a 
specific key, and generate a new list of the reduced output.  

 reduce(key2, list<value2>) -> list<value3>  
 

 
                                           Fig. 4.2 MapReduce operation 

 "Map" step: Each worker node applies the 
"map()" function to the local data, and writes the 

output to a temporary storage. A master node 
orchestrates that for redundant copies of input 
data, only one is processed. 

 "Shuffle" step: Worker nodes redistribute data 
based on the output keys (produced by the "map()" 
function), such that all data belonging to one key 
is located on the same worker node fig.4.2. 

 "Reduce" step: Worker nodes now process each 
group of output data, per key, in parallel. 

B. Map Reduce core functionality(II): 
Data flow beyond the two key pieces (map and reduce):  

 
Fig. 4.3 Occurences of intermediate data 

 

 Input reader – divides input into appropriate size 
splits which get assigned to a Map function  

 Map function – maps file data to smaller, 
intermediate  <key, value> pairs  

 Partition function – finds the correct reducer: 
given the key and number of reducers, returns the 
desired Reduce node  

 Compare function – input for Reduce is pulled 
from the Map intermediate output and sorted 
according to this compare function  

 Reduce function – takes intermediate values and 
reduces to a smaller solution handed back to the 
framework  

 Output writer – writes file output  
 
C. Map Reduce core functionality(III): 
 

 
         Fig 4.4 key values in MapReduce 
 

MapReduce operates exclusively on <key, value> pairs  
•Job Input:  <key, value> pairs  
•Job Output:  <key, value> pairs  
 
Conceivably of different types Key and value classes have 
to be serializable by the framework. Default serialization 
requires keys and values to implement Writable Key 
classes must facilitate sorting by the framework . 
 
To explain in detail, we’ll use a code example: WordCount 
We will count occurrences of each word across different 
files 
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------------------------------------------------------------ 
Two input files: 
file1: “hello world hello moon” 
file2: “goodbye world goodnight moon” 
-------------------------------------------------------------- 
Three operations: 

 Map 
 Combine 
 Reduce 

---------------------------------------------------------------- 
Q. What is the output per step? 
 
MAP 
First map:    Second map: 
< hello, 1 >   < goodbye, 1 > 
< world, 1 >   < world, 1 > 
< hello, 1 >   < goodnight, 1 > 
< moon, 1 >   < moon, 1 > 
 
COMBINE 
First map:    Second map: 
< moon, 1 >   < goodbye, 1 > 
< world, 1 >   < world, 1 > 
< hello, 2 >   < goodnight, 1 > 

< moon, 1 > 
 
REDUCE 
< goodbye, 1 > 
< goodnight, 1 > 
< moon, 2 > 
< world, 2 > 
< hello, 2 > 
                                      

IV.  PIG 
Pig was initially developed at Yahoo! to allow people using 
Hadoop® to focus more on analyzing large data sets and 
spend less time having to write mapper and reducer 
programs. Like actual pigs, who eat almost anything, the 
Pig programming language is designed to handle any kind 
of data—hence the name! Stay on top of all the changes 
including, Hadoop-based analytics, streaming analytics, 
warehousing (including BigSQL), data asset discovery, 
integration, and governance fig.3.2. 

Pig is made up of two components: the first is the 
language itself, which is called PigLatin[16] (people 
naming various Hadoop projects do tend to have a sense of 
humor associated with their naming conventions), and the 
second is a runtime environment where PigLatin programs 
are executed. Think of the relationship between a Java 
Virtual Machine (JVM) and a Java application. In this 
section, we’ll just refer to the whole entity as Pig. Let’s 
first look at the programming language itself so that you 
can see how it’s significantly easier than having to write 
mapper and reducer programs.  

1. The first step in a Pig program is to LOAD the 
data you want to manipulate from HDFS. 

2. Then you run the data through a set of 
transformations (which, under the covers, are 
translated into a set of mapper and reducer tasks). 

3. Finally, you DUMP the data to the screen or you 
STORE the results in a file somewhere. 

LOAD : As is the case with all the Hadoop features, the 
objects that are being worked on by Hadoop are stored in 
HDFS. In order for a Pig program to access this data, the 
program must first tell Pig what file (or files) it will use, 
and that’s done through the LOAD 'data_file' command 
(where 'data_file' specifies either an HDFS file or 
directory).  
If a directory is specified, all the files in that directory will 
be loaded into the program. If the data is stored in a file 
format that is not natively accessible to Pig, you can 
optionally add the USING function to the LOAD statement 
to specify a user-defined function that can read in and 
interpret the data[16].  
TRANSFORM : The transformation logic is where all the 
data manipulation happens. Here you can FILTER out rows 
that are not of interest, JOIN two sets of data files, GROUP 
data to build aggregations, ORDER results, and much 
more.  
DUMP and STORE : If you don’t specify the DUMP or 
STORE command, the results of a Pig program are not 
generated. You would typically use the DUMP command, 
which sends the output to the screen, when you are 
debugging your Pig programs. When you go into 
production, you simply change the DUMP call to a STORE 
call so that any results from running your programs are 
stored in a file for further processing or analysis. Note that 
you can use the DUMP command anywhere in your 
program to dump intermediate result sets to the screen, 
which is very useful for debugging purposes.  
 

V. HIVE 
Apache Hive is a data warehouse infrastructure built on top 
of Hadoop for providing data summarization, query, and 
analysis. While initially developed by Facebook, Apache 
Hive is now used and developed by other companies such 
as Netflix. Amazon maintains a software fork of Apache 
Hive that is included in Amazon Elastic MapReduce on 
Amazon Web Services fig.3.2.  
Apache Hive supports analysis of large datasets stored in 
Hadoop's HDFS and compatible file systems such as 
Amazon S3 filesystem[14]. It provides an SQL-like 
language called HiveQL with schema on read and 
transparently converts queries to map/reduce, Apache Tez 
and in the future Spark jobs. All three execution engines 
can run in Hadoop YARN. To accelerate queries, it 
provides indexes, including bitmap indexes. By default, 
Hive stores metadata in an embedded Apache Derby 
database, and other client/server databases like MySQL can 
optionally be used[14]. Currently, there are four file 
formats supported in Hive, which are TEXTFILE 
SEQUENCEFILE, ORC and RCFILE.  
Other features of Hive include: 

 Indexing to provide acceleration, index type 
including compaction and Bitmap index as of 
0.10, more index types are planned. 

 Different storage types such as plain text, RCFile, 
HBase, ORC, and others. 
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 Metadata storage in an RDBMS, significantly 
reducing the time to perform semantic checks 
during query execution. 

 Operating on compressed data stored into Hadoop 
ecosystem, algorithm including gzip, bzip2, 
snappy, etc. 

 Built-in user defined functions (UDFs) to 
manipulate dates, strings, and other data-mining 
tools. Hive supports extending the UDF set to 
handle use-cases not supported by built-in 
functions. 

 SQL-like queries (HiveQL), which are implicitly 
converted into MapReduce jobs. 

While based on SQL, HiveQL does not strictly follow the 
full SQL-92 standard. HiveQL offers extensions not in 
SQL, including multitable inserts and create table as select, 
but only offers basic support for indexes[7]. Also, HiveQL 
lacks support for transactions and materialized views, and 
only limited subquery support. There are plans for adding 
support for insert, update, and delete with full ACID 
functionality.  
Internally, a compiler translates HiveQL statements into a 
directed acyclic graph of MapReduce jobs, which are 
submitted to Hadoop for execution.  
Although Pig can be quite a powerful and simple language 
to use, the downside is that it’s something new to learn and 
master. Some folks at Facebook developed a runtime 
Hadoop® support structure that allows anyone who is 
already fluent with SQL (which is commonplace for 
relational data-base developers) to leverage the Hadoop 
platform right out of the gate.Their creation, called Hive, 
allows SQL developers to write Hive Query Language 
(HQL) statements that are similar to standard SQL 
statements; now you should be aware that HQL is limited 
in the commands it understands, but it is still pretty useful. 
HQL statements are broken down by the Hive service into 
MapReduce jobs and executed acros a Hadoop cluster.  
For anyone with a SQL or relational database background, 
this section will look very familiar to you. As with any 
database management system (DBMS), you can run your 
Hive queries in many ways. You can run them from a 
command line interface (known as the Hive shell), from a 
Java Database Connectivity (JDBC) or Open Database 
Connectivity (ODBC) application leveraging the Hive 
JDBC/ODBC drivers, or from what is called a Hive Thrift 
Client. The Hive Thrift Client is much like any database 
client that gets installed on a user’s client machine (or in a 
middle tier of a three-tier architecture): it communicates 
with the Hive services running on the server. You can use 
the Hive Thrift Client within applications written in C++, 
Java, PHP, Python, or Ruby (much like you can use these 
client-side languages with embedded SQL to access a 
database such as DB2 or Informix).  
Hive looks very much like traditional database code with 
SQL access. However, because Hive is based on Hadoop 
and MapReduce operations, there are several key 
differences. The first is that Hadoop is intended for long 
sequential scans, and because Hive is based on Hadoop, 
you can expect queries to have a very high latency (many 
minutes). This means that Hive would not be appropriate 

for applications that need very fast response times, as you 
would expect with a database such as DB2. Finally, Hive is 
read-based and therefore not appropriate for transaction 
processing that typically involves a high percentage of 
write operations.  
 

VI. HBASE 
Apache HBase began as a project by the company Powerset 
out of a need to process massive amounts of data for the 
purposes of natural language search. It is now a top-level 
Apache project fig.3.2.Facebook elected to implement its 
new messaging platform using HBase in November 2010. 
HBase is a column-oriented database management system 
that runs on top of HDFS. It is well suited for sparse data 
sets, which are common in many big data use cases. Unlike 
relational database systems, HBase does not support a 
structured query language like SQL; in fact, HBase isn’t a 
relational data store at all. HBase applications are written in 
Java much like a typical MapReduce application. HBase 
does support writing applications in Avro, REST, and 
Thrift. 
An HBase system comprises a set of tables. Each table 
contains rows and columns, much like a traditional 
database. Each table must have an element defined as a 
Primary Key, and all access attempts to HBase tables must 
use this Primary Key. An HBase column represents an 
attribute of an object[15]; for example, if the table is 
storing diagnostic logs from servers in your environment, 
where each row might be a log record, a typical column in 
such a table would be the timestamp of when the log record 
was written, or perhaps the server name where the record 
originated. In fact, HBase allows for many attributes to be 
grouped together into what are known as column families, 
such that the elements of a column family are all stored 
together. This is different from a row-oriented relational 
database, where all the columns of a given row are stored 
together. With HBase you must predefine the table schema 
and specify the column families. However, it’s very 
flexible in that new columns can be added to families at 
any time, making the schema flexible and therefore able to 
adapt to changing application requirements.  
Just as HDFS has a NameNode and slave nodes, and 
MapReduce has JobTracker and TaskTracker slaves, 
HBase is built on similar concepts. In HBase a master node 
manages the cluster and region servers store portions of the 
tables and perform the work on the data[15]. In the same 
way HDFS has some enterprise concerns due to the 
availability of the NameNode (among other areas that can 
be “hardened” for true enterprise deployments by 
InfoSphere BigInsights), HBase is also sensitive to the loss 
of its master node. 
 

VII. CONCLUSION 
Hadoop MapReduce is a large scale, open source software 
framework dedicated to scalable, distributed, data-intensive 
computing. The framework breaks up large data into 
smaller parallelizable chunks and handles scheduling 
▫ Maps each piece to an intermediate value 
▫ Reduces intermediate values to a solution 
▫ User-specified partition and combiner options 
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• Fault tolerant, reliable, and supports thousands of nodes 
and petabytes of data 
• If you can rewrite algorithms into Maps and Reduces, 
and your problem can be broken up into small pieces 
solvable in parallel, then Hadoop’s MapReduce is the 
way to go for a distributed problem solving approach to 
large datasets 
• Tried and tested in production 
• Many implementation options 
We can present the design and evaluation of a data aware 
cache framework that requires minimum change to the 
original MapReduce programming model for provisioning 
incremental processing for Big data applications using the 
MapReduce model.  
 

FUTURE ENHANCEMENT: 
Usually it is observed that the M a p R e d u c e  framework  
generates a large amount of intermediate data. Such  
abundant information is thrown away after the tasks 
finish, because MapReduce  is unable to utilize 
them.Therefore, we propose Dache, a data-aware 
cache framework  for big-data applications then its 
tasks submit their intermediate results to the cache 
manager. The task queries the cache manager before  
executing the actual  computing  work. A novel cache 
description scheme and  a cache request and  reply 
protocol  are  designed. 
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