

Survey Paper On Big Data

Ms. Vibhavari Chavan, Prof. Rajesh. N. Phursule

Department of Computer Engineering

JSPM’s Imperial College of Engineering and Research, Pune

 Abstract- Big data is the term for any collection of data
sets so large and complex that it becomes difficult to process
using traditional data processing applications. The challenges
include analysis, capture, curation, search, sharing, storage,
transfer, visualization, and privacy violations. The trend to
larger data sets is due to the additional information derivable
from analysis of a single large set of related data, as compared
to separate smaller sets with the same total amount of data,
allowing correlations to be found to "spot business trends,
prevent diseases, combat crime and so on." Big data is
difficult to work with using most relational database
management systems and desktop statistics and visualization
packages, requiring instead "massively parallel software
running on tens, hundreds, or even thousands of servers". Big
data usually includes data sets with sizes beyond the ability of
commonly used software tools to capture, curate, manage, and
process data within a tolerable elapsed time. Big data "size" is
a constantly moving target, as of its ranging from a few dozen
terabytes to many petabytes of data. Big data is a set of
techniques and technologies that require new forms of
integration to uncover large hidden values from large datasets
that are diverse, complex, and of a massive scale. Big data
environment is used to acquire, organize and analyze the
various types of data.There is an observation about Map
Reduce framework that framework generates large amount of
intermediate data. Therefore, as well as the tasks finishes
there is need of throwing that abundant data, because
MapReduce is unable to utilize them.

 Index Terms- Big data, Hadoop, HDFS, MapReduce, Pig,
Hive, Hbase,

I.INTRODUCTION
1. WHAT IS BIG DATA?
We create 2.5 quintillion bytes of data — so much that 90%
of the data in the world today has been created in the last
two years alone. This much amount of data comes from
everywhere: sensors used to gather climate information,
posts to social media sites, digital pictures and videos,
purchase transaction records, and cell phone GPS signals to
name a few. This huge amount of the data is known as “Big
data”[14]. Big data is a buzzword, or catch-phrase, utilizes
to describe a massive volume of both structured and
unstructured data that is so huge that it's complicated to
process using traditional database and software techniques.
In most enterprise scenarios the data is too large or it
moves too fast or it exceeds current processing capacity.
Big data has the potential to help organizations to improve
operations and make faster, more intelligent decisions[15].
Big Data, now a days this term becomes common in IT
industries. As there is a huge amount of data lies in the
industry but there is nothing before big data comes into
picture [3]. Big data is actually an evolving term that

describes any voluminous amount of structured, semi-
structured and unstructured data that has the potential to be
mined for information. Although big data doesn't refer to
any specific quantity, so this term is often used when
speaking about petabytes and exabytes of data[16]. Big
data is an all-encompassing term for large collection of the
data sets so this huge and complex that it becomes difficult
to operate them using traditional data processing
applications. When dealing with larger datasets,
organizations face difficulties in being able to create,
manipulate, and manage big data. Big data is particularly a
problem in business analytics because standard tools and
procedures are not designed to search and analyze massive
datasets.
An example of big data might be petabytes (1,024
terabytes) or exabytes (1,024 petabytes) of data consisting
of billions to trillions of records of millions of people—all
from different sources (e.g. Web, sales, customer contact
center, social media, mobile data and so on). The data is
typically loosely structured data that is often incomplete
and inaccessible[15].
The challenges include analysis, capture, curation, search,
sharing, storage, transfer, visualization, and privacy
violations. The trend to larger data sets is due to the
additional information derivable from analysis of a single
large set of related data, as compared to separate smaller
sets with the same total amount of data, allowing
correlations to be found to "spot business trends, prevent
diseases, combat crime and so on"[10].Scientists regularly
encounter limitations due to large data sets in many areas,
including meteorology, genomics, connectomics, complex
physics simulations, and biological and environmental
research. The limitations also affect Internet search, finance
and business informatics. Data sets grow in size in part
because they are increasingly being gathered by ubiquitous
information-sensing mobile devices, aerial sensory
technologies (remote sensing), software logs, cameras,
microphones, radio-frequency identification (RFID)
readers, and wireless sensor networks. The world's
technological per-capita capacity to store information has
roughly doubled every 40 months since the 1980s;as of
2012, every day 2.5 exabytes (2.5×1018) of data were
created. The challenge for large enterprises is determining
who should own big data initiatives that straddle the entire
organization.
Big data defined as far back as 2001, industry analyst
Doug Laney (currently with Gartner) articulated the now
mainstream definition of big data as the three Vs of big
data: volume, velocity and variety [18]. Big data can be
characterized by welknown 3Vs: the extreme volume of

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7932

data, the wide variety of types of data and the velocity at
which the data must be must processed. Although big data
doesn't refer to any specific quantity, the term is often used
when speaking about petabytes and exabytes of data, much
of which cannot be integrated easily. [16]

 Fig. 1.1 3V’s factors of Big Data

 Volume. Many factors contribute to the increase
in data volume. Transaction-based data stored
through the years. Unstructured data streaming in
from social media. Increasing amounts of sensor
and machine-to-machine data being collected. In
the past, excessive data volume was a storage
issue. But with decreasing storage costs, other
issues emerge, including how to determine
relevance within large data volumes and how to
use analytics to create value from relevant
data.fig.1.1

 Velocity. Data is streaming in at unprecedented
speed and must be dealt with in a timely manner.
RFID tags, sensors and smart metering are driving
the need to deal with torrents of data in near-real
time. Reacting quickly enough to deal with data
velocity is a challenge for most
organizations.fig.1.1

 Variety. Data today comes in all types of formats.
Structured, numeric data in traditional databases.
Information created from line-of-business
applications. Unstructured text documents, email,
video, audio, stock ticker data and financial
transactions. Managing, merging and governing
different varieties of data is something many
organizations still grapple with.fig.1.1

We consider two additional dimensions when thinking
about big data:

 Variability. In addition to the increasing
velocities and varieties of data, data flows can be
highly inconsistent with periodic peaks. Is
something trending in social media? Daily,
seasonal and event-triggered peak data loads can
be challenging to manage. Even more so with
unstructured data involved.

 Complexity. Today's data comes from multiple
sources. And it is still an undertaking to link,
match, cleanse and transform data across systems.
However, it is necessary to connect and correlate

relationships, hierarchies and multiple data
linkages or your data can quickly spiral out of
control [17].

Data storage has grown significantly, shifting makedly
from analog to digital after 2000 fig.1.2

Fig. 1.2 Data storage growth graph

Big Data, the analysis of huge quantities of data to gain
new insight has become a ubiquitous phrase in recent years.
As we know that day by day the data is growing at a
staggering rate. One of the efficient well-known
technologies that deal with the Big Data is Hadoop [6].

2. Hadoop:
Hadoop was created by Doug Cutting and Mike Cafarella in
2005. Doug Cutting, who was working at Yahoo! at the
time, named it after his son's toy elephant. It was originally
developed to support distribution for the Nutch search
engine project. Hadoop is open-source software that
enables reliable, scalable, distributed computing on clusters
of inexpensive servers[1].
Hadoop is:

 Reliable: The software is fault tolerant, it expects
and handles hardware and software failures

 Scalable: Designed for massive scale of
processors, memory, and local attached storage

 Distributed: Handles replication. Offers massively
parallel programming model, Map Reduce

 Fig 2.1 Hadoop system

Hadoop is an Open Source implementation of a large-scale
batch processing system. That use the Map-Reduce

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7933

framework introduced by Google by leveraging the
concept of map and reduce functions that well known used
in Functional Programming. Although the Hadoop
framework is written in Java, it allows developers to deploy
custom-written programs coded in Java or any other
language to process data in a parallel fashion across
hundreds or thousands of commodity servers. It is
optimized for contiguous read requests(streaming reads),
where processing includes of scanning all the data.
Depending on the complexity of the process and the
volume of data, response time can vary from minutes to
hours. While Hadoop can processes data fast, so its key
advantage is its massive scalability [20].
Hadoop is currently being used for index web searches,
email spam detection, recommendation engines, prediction
in financial services, genome manipulation in life sciences,
and for analysis of unstructured data such as log, text, and
clickstream. While many of these applications could in fact
be implemented in a relational database(RDBMS)fig 2.1,
the main core of the Hadoop framework is functionally
different from an RDBMS. The following discusses some
of these differences Hadoop is particularly useful when:

 Complex information processing is needed
 Unstructured data needs to be turned into

structured data
 Queries can’t be reasonably expressed using SQL
 Heavily recursive algorithms
 Complex but parallelizable algorithms needed,

such as geo-spatial analysis or genome sequencing
 Machine learning
 Data sets are too large to fit into database RAM,

discs, or require too many cores (10’s of TB up to
PB)

 Data value does not justify expense of constant
real-time availability, such as archives or special
interest info, which can be moved to Hadoop and
remain available at lower cost

 Results are not needed in real time
 Fault tolerance is critical
 Significant custom coding would be required to

handle job scheduling
Hadoop was inspired by Google's MapReduce, a software
framework in which an application is broken down into
numerous small parts. Any of these parts (also called
fragments or blocks) can be run on any node in the cluster.
Doug Cutting, Hadoop's creator, named the framework
after his child's stuffed toy elephant. The current Apache
Hadoop ecosystem consists of the Hadoop kernel,
MapReduce, the Hadoop distributed file system (HDFS)
and a number of related projects such as Apache Hive,
HBase and Zookeeper. The Hadoop framework is used by
major players including Google, Yahoo and IBM, largely
for applications involving search engines and advertising.
The preferred operating systems are Windows and Linux
but Hadoop can also work with BSD and OS X [21].
A distributed file system is a client/server-based application
that allows clients to access and process data stored on the
server as if it were on their own computer. A distributed
file system is a client/server-based application that allows
clients to access and process data stored on the server as if

it were on their own computer. When a user accesses a file
on the server, the server sends the user a copy of the file,
which is cached on the user's computer while the data is
being processed and is then returned to the server. Ideally, a
distributed file system organizes file and directory services
of individual servers into a global directory in such a way
that remote data access is not location-specific but is
identical from any client. All files are accessible to all users
of the global file system and organization is hierarchical
and directory-based[2].

Since more than one client may access the same
data simultaneously, the server must have a mechanism in
place (such as maintaining information about the times of
access) to organize updates so that the client always
receives the most current version of data and that data
conflicts do not arise. Distributed file systems typically use
file or database replication (distributing copies of data on
multiple servers) to protect against data access
failures[4].Sun Microsystems' Network File System
(NFS)[21],Novell NetWare, Microsoft's Distributed File
System, and IBM/Transarc's DFS are some examples of
distributed file systems.

II. HDFS

The Hadoop Distributed File System (HDFS) is the file
system component of the Hadoop framework[13]. HDFS is
designed and optimized to store data over a large amount of
low-cost hardware in a distributed fashion.

 Fig.3.1 HDFS architecture

Name Node :
Name node is a type of the master node, which is
having the information that means meta data about the
all data node there is address(use to talk), free space, data
they store, active data node , passive data node, task
tracker, job tracker and many other configuration such as
replication of data [3].
The NameNode records all of the metadata, attributes, and
locations of files and data blocks in to the DataNodes. The
attributes it records are the things like file permissions, file
modification and access times, and namespace, which is a
hierarchy of files and directories. The NameNode maps the
namespace tree to file blocks in DataNodes. When a client
node wants to read a file in the HDFS it first contacts the
Namenode to receive the location of the data blocks

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7934

associated with that file [27].
A NameNode stores information about the overall system
because it is the master of the HDFS with the DataNodes
being the slaves. It stores the image and journal logs of the
system. The image of the system is a list of blocks and
data for each file stored in the HDFS. The journal is just a
modification log of the image. The NameNode must
always store the most up to date image and journal.
Basically, the NameNode always knows where the data
blocks and replicates are for each file and it also knows
where the free blocks are in the system so it keeps track of
where future files can be written.

Data Node:
Data node is a type of slave node in the hadoop, which is
used to save the data and there is task tracker in data
node which is use to track on the ongoing job on the data
node and the jobs which coming from name node[3].
The DataNodes store the blocks and block replicas of the
file system. During startup each DataNode connects and
performs a handshake with the NameNode. The DataNode
checks for the accurate namespace ID, and if not found
then the DataNode automatically shuts down. New
DataNodes can join the cluster by simply registering with
the NameNode and receiving the namespace ID [27]. Each
DataNode keeps track of a block report for the blocks in its
node. Each DataNode sends its block report to the
NameNode every hour so that the NameNode always has
an up to date view of where block replicas are located in
the cluster.During the normal operation of the HDFS, each
DataNode also sends a heartbeat to the NameNode every
ten minutes so that the NameNode knows which
DataNodes are operating correctly and are available. If
after ten minutes the NameNode doesn’t receive a
heartbeat from a DataNode then the NameNode assumes
that the DataNode is lost and begins creating replicas of
that DataNode’s lost blocks on other DataNodes. The nice
thing about the HDFS architecture is that the NameNode
doesn’t have to reach out to the DataNodes, it instead waits
for the DataNodes to send their block reports and
heartbeats to it. The NameNode can receive thousands of
DataNode’s heartbeats every second and not adversely
affect other NameNode operations [27].
Apache Hadoop is an open-source software framework for
distributed storage and distributed processing of Big Data
on clusters of commodity hardware. Its Hadoop
Distributed File System (HDFS) splits files into large
blocks (default 64MB or 128MB) and distributes the
blocks amongst the nodes in the cluster. For processing the
data, the Hadoop Map/Reduce ships code (specifically Jar
files) to the nodes that have the required data, and the
nodes then process the data in parallel. This approach takes
advantage of data locality, in contrast to conventional HPC
architecture which usually relies on a parallel file system
(compute and data separated, but connected with high-
speed networking).
The base Apache Hadoop framework is composed of the
following modules:

 Hadoop Common – contains libraries and utilities
needed by other Hadoop modules.

 Hadoop Distributed File System (HDFS) – a
distributed file-system that stores data on
commodity machines, providing very high
aggregate bandwidth across the cluster.

 Hadoop MapReduce – a programming model for
large scale data processing.

All the modules in Hadoop are designed with a
fundamental assumption that hardware failures (of
individual machines, or racks of machines) are common
and thus should be automatically handled in software by
the framework. Apache Hadoop's MapReduce and HDFS
components originally derived respectively from Google's
MapReduce and Google File System (GFS)
papers."Hadoop" often refers not to just the base Hadoop
package but rather to the Hadoop Ecosystem fig.3.2,
which includes all of the additional software packages that
can be installed on top of or alongside Hadoop, such as
Apache Hive, Apache Pig and Apache Spark.

 Fig. 3.2 Hadoop Ecosystem

III. MAP REDUCE FRAMEWORK
Map Reduce is a software framework for distributed
processing of large data sets on computer clusters. It is first
developed by Google .Map Reduce is intended to facilitate
and simplify the processing of vast amounts of data in
parallel on large clusters of commodity hardware in a
reliable, fault-tolerant manner [4].
MapReduce is the key algorithm that the Hadoop
MapReduce engine uses to distribute work around a cluster.
Typical Hadoop cluster integrates MapReduce and HFDS
layer. In MapReduce layer job tracker assigns tasks to the
task tracker.Master node job tracker also assigns tasks to
the slave node task tracker fig.4.1

Fig. 4.1 Map reduce is based on the Maser-Slave architecture

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7935

Master node contains -
 Job tracker node (MapReduce layer)
 Task tracker node (MapReduce layer)
 Name node (HFDS layer)
 Data node (HFDS layer)

Multiple slave nodes contain -
 Task tracker node (MapReduce layer)
 Data node (HFDS layer)
 MapReduce layer has job and task tracker nodes
 HFDS layer has name and data nodes

Single JobTracker per master is responsible for scheduling
the jobs’ component tasks on the slaves .It monitors slave
progress. It also re-executing failed tasks .As well as single
TaskTracker per slave execute the tasks as directed by the
master.Map reduce core functionality is based on the Map
phase and reduce phase. Code usually written in Java-
though it can be written in other languages with the Hadoop
Streaming API.

A. Map Reduce core functionality(I):
In this functionality Map and Reduce pieces are playing
vital role.
I. Map step
In this Map phase the Master node takes large problem
input and slices it into smaller sub problems; distributes
these to worker nodes.Worker node may do this again;
leads to a multi-level tree structure .Worker processes
smaller problem and hands back to master
A map transform is provided to transform an input data row
of key and value to an output key/value:

 map(key1,value) -> list<key2,value2>
That is, for an input it returns a list containing zero or more
(key,value) pairs:

 The output can be a different key from the input
 The output can have multiple entries with the

same key
 II. Reduce step:
In this Reduce phase Master node takes the answers to the
sub problems and combines them in a predefined way to
get the output/answer to original problem
A reduce transform is provided to take all values for a
specific key, and generate a new list of the reduced output.

 reduce(key2, list<value2>) -> list<value3>

 Fig. 4.2 MapReduce operation

 "Map" step: Each worker node applies the
"map()" function to the local data, and writes the

output to a temporary storage. A master node
orchestrates that for redundant copies of input
data, only one is processed.

 "Shuffle" step: Worker nodes redistribute data
based on the output keys (produced by the "map()"
function), such that all data belonging to one key
is located on the same worker node fig.4.2.

 "Reduce" step: Worker nodes now process each
group of output data, per key, in parallel.

B. Map Reduce core functionality(II):
Data flow beyond the two key pieces (map and reduce):

Fig. 4.3 Occurences of intermediate data

 Input reader – divides input into appropriate size
splits which get assigned to a Map function

 Map function – maps file data to smaller,
intermediate <key, value> pairs

 Partition function – finds the correct reducer:
given the key and number of reducers, returns the
desired Reduce node

 Compare function – input for Reduce is pulled
from the Map intermediate output and sorted
according to this compare function

 Reduce function – takes intermediate values and
reduces to a smaller solution handed back to the
framework

 Output writer – writes file output

C. Map Reduce core functionality(III):

 Fig 4.4 key values in MapReduce

MapReduce operates exclusively on <key, value> pairs
•Job Input: <key, value> pairs
•Job Output: <key, value> pairs

Conceivably of different types Key and value classes have
to be serializable by the framework. Default serialization
requires keys and values to implement Writable Key
classes must facilitate sorting by the framework .

To explain in detail, we’ll use a code example: WordCount
We will count occurrences of each word across different
files

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7936

--
Two input files:
file1: “hello world hello moon”
file2: “goodbye world goodnight moon”
--
Three operations:

 Map
 Combine
 Reduce

--
Q. What is the output per step?

MAP
First map: Second map:
< hello, 1 > < goodbye, 1 >
< world, 1 > < world, 1 >
< hello, 1 > < goodnight, 1 >
< moon, 1 > < moon, 1 >

COMBINE
First map: Second map:
< moon, 1 > < goodbye, 1 >
< world, 1 > < world, 1 >
< hello, 2 > < goodnight, 1 >

< moon, 1 >

REDUCE
< goodbye, 1 >
< goodnight, 1 >
< moon, 2 >
< world, 2 >
< hello, 2 >

IV. PIG
Pig was initially developed at Yahoo! to allow people using
Hadoop® to focus more on analyzing large data sets and
spend less time having to write mapper and reducer
programs. Like actual pigs, who eat almost anything, the
Pig programming language is designed to handle any kind
of data—hence the name! Stay on top of all the changes
including, Hadoop-based analytics, streaming analytics,
warehousing (including BigSQL), data asset discovery,
integration, and governance fig.3.2.

Pig is made up of two components: the first is the
language itself, which is called PigLatin[16] (people
naming various Hadoop projects do tend to have a sense of
humor associated with their naming conventions), and the
second is a runtime environment where PigLatin programs
are executed. Think of the relationship between a Java
Virtual Machine (JVM) and a Java application. In this
section, we’ll just refer to the whole entity as Pig. Let’s
first look at the programming language itself so that you
can see how it’s significantly easier than having to write
mapper and reducer programs.

1. The first step in a Pig program is to LOAD the
data you want to manipulate from HDFS.

2. Then you run the data through a set of
transformations (which, under the covers, are
translated into a set of mapper and reducer tasks).

3. Finally, you DUMP the data to the screen or you
STORE the results in a file somewhere.

LOAD : As is the case with all the Hadoop features, the
objects that are being worked on by Hadoop are stored in
HDFS. In order for a Pig program to access this data, the
program must first tell Pig what file (or files) it will use,
and that’s done through the LOAD 'data_file' command
(where 'data_file' specifies either an HDFS file or
directory).
If a directory is specified, all the files in that directory will
be loaded into the program. If the data is stored in a file
format that is not natively accessible to Pig, you can
optionally add the USING function to the LOAD statement
to specify a user-defined function that can read in and
interpret the data[16].
TRANSFORM : The transformation logic is where all the
data manipulation happens. Here you can FILTER out rows
that are not of interest, JOIN two sets of data files, GROUP
data to build aggregations, ORDER results, and much
more.
DUMP and STORE : If you don’t specify the DUMP or
STORE command, the results of a Pig program are not
generated. You would typically use the DUMP command,
which sends the output to the screen, when you are
debugging your Pig programs. When you go into
production, you simply change the DUMP call to a STORE
call so that any results from running your programs are
stored in a file for further processing or analysis. Note that
you can use the DUMP command anywhere in your
program to dump intermediate result sets to the screen,
which is very useful for debugging purposes.

V. HIVE
Apache Hive is a data warehouse infrastructure built on top
of Hadoop for providing data summarization, query, and
analysis. While initially developed by Facebook, Apache
Hive is now used and developed by other companies such
as Netflix. Amazon maintains a software fork of Apache
Hive that is included in Amazon Elastic MapReduce on
Amazon Web Services fig.3.2.
Apache Hive supports analysis of large datasets stored in
Hadoop's HDFS and compatible file systems such as
Amazon S3 filesystem[14]. It provides an SQL-like
language called HiveQL with schema on read and
transparently converts queries to map/reduce, Apache Tez
and in the future Spark jobs. All three execution engines
can run in Hadoop YARN. To accelerate queries, it
provides indexes, including bitmap indexes. By default,
Hive stores metadata in an embedded Apache Derby
database, and other client/server databases like MySQL can
optionally be used[14]. Currently, there are four file
formats supported in Hive, which are TEXTFILE
SEQUENCEFILE, ORC and RCFILE.
Other features of Hive include:

 Indexing to provide acceleration, index type
including compaction and Bitmap index as of
0.10, more index types are planned.

 Different storage types such as plain text, RCFile,
HBase, ORC, and others.

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7937

 Metadata storage in an RDBMS, significantly
reducing the time to perform semantic checks
during query execution.

 Operating on compressed data stored into Hadoop
ecosystem, algorithm including gzip, bzip2,
snappy, etc.

 Built-in user defined functions (UDFs) to
manipulate dates, strings, and other data-mining
tools. Hive supports extending the UDF set to
handle use-cases not supported by built-in
functions.

 SQL-like queries (HiveQL), which are implicitly
converted into MapReduce jobs.

While based on SQL, HiveQL does not strictly follow the
full SQL-92 standard. HiveQL offers extensions not in
SQL, including multitable inserts and create table as select,
but only offers basic support for indexes[7]. Also, HiveQL
lacks support for transactions and materialized views, and
only limited subquery support. There are plans for adding
support for insert, update, and delete with full ACID
functionality.
Internally, a compiler translates HiveQL statements into a
directed acyclic graph of MapReduce jobs, which are
submitted to Hadoop for execution.
Although Pig can be quite a powerful and simple language
to use, the downside is that it’s something new to learn and
master. Some folks at Facebook developed a runtime
Hadoop® support structure that allows anyone who is
already fluent with SQL (which is commonplace for
relational data-base developers) to leverage the Hadoop
platform right out of the gate.Their creation, called Hive,
allows SQL developers to write Hive Query Language
(HQL) statements that are similar to standard SQL
statements; now you should be aware that HQL is limited
in the commands it understands, but it is still pretty useful.
HQL statements are broken down by the Hive service into
MapReduce jobs and executed acros a Hadoop cluster.
For anyone with a SQL or relational database background,
this section will look very familiar to you. As with any
database management system (DBMS), you can run your
Hive queries in many ways. You can run them from a
command line interface (known as the Hive shell), from a
Java Database Connectivity (JDBC) or Open Database
Connectivity (ODBC) application leveraging the Hive
JDBC/ODBC drivers, or from what is called a Hive Thrift
Client. The Hive Thrift Client is much like any database
client that gets installed on a user’s client machine (or in a
middle tier of a three-tier architecture): it communicates
with the Hive services running on the server. You can use
the Hive Thrift Client within applications written in C++,
Java, PHP, Python, or Ruby (much like you can use these
client-side languages with embedded SQL to access a
database such as DB2 or Informix).
Hive looks very much like traditional database code with
SQL access. However, because Hive is based on Hadoop
and MapReduce operations, there are several key
differences. The first is that Hadoop is intended for long
sequential scans, and because Hive is based on Hadoop,
you can expect queries to have a very high latency (many
minutes). This means that Hive would not be appropriate

for applications that need very fast response times, as you
would expect with a database such as DB2. Finally, Hive is
read-based and therefore not appropriate for transaction
processing that typically involves a high percentage of
write operations.

VI. HBASE
Apache HBase began as a project by the company Powerset
out of a need to process massive amounts of data for the
purposes of natural language search. It is now a top-level
Apache project fig.3.2.Facebook elected to implement its
new messaging platform using HBase in November 2010.
HBase is a column-oriented database management system
that runs on top of HDFS. It is well suited for sparse data
sets, which are common in many big data use cases. Unlike
relational database systems, HBase does not support a
structured query language like SQL; in fact, HBase isn’t a
relational data store at all. HBase applications are written in
Java much like a typical MapReduce application. HBase
does support writing applications in Avro, REST, and
Thrift.
An HBase system comprises a set of tables. Each table
contains rows and columns, much like a traditional
database. Each table must have an element defined as a
Primary Key, and all access attempts to HBase tables must
use this Primary Key. An HBase column represents an
attribute of an object[15]; for example, if the table is
storing diagnostic logs from servers in your environment,
where each row might be a log record, a typical column in
such a table would be the timestamp of when the log record
was written, or perhaps the server name where the record
originated. In fact, HBase allows for many attributes to be
grouped together into what are known as column families,
such that the elements of a column family are all stored
together. This is different from a row-oriented relational
database, where all the columns of a given row are stored
together. With HBase you must predefine the table schema
and specify the column families. However, it’s very
flexible in that new columns can be added to families at
any time, making the schema flexible and therefore able to
adapt to changing application requirements.
Just as HDFS has a NameNode and slave nodes, and
MapReduce has JobTracker and TaskTracker slaves,
HBase is built on similar concepts. In HBase a master node
manages the cluster and region servers store portions of the
tables and perform the work on the data[15]. In the same
way HDFS has some enterprise concerns due to the
availability of the NameNode (among other areas that can
be “hardened” for true enterprise deployments by
InfoSphere BigInsights), HBase is also sensitive to the loss
of its master node.

VII. CONCLUSION
Hadoop MapReduce is a large scale, open source software
framework dedicated to scalable, distributed, data-intensive
computing. The framework breaks up large data into
smaller parallelizable chunks and handles scheduling
▫ Maps each piece to an intermediate value
▫ Reduces intermediate values to a solution
▫ User-specified partition and combiner options

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7938

• Fault tolerant, reliable, and supports thousands of nodes
and petabytes of data
• If you can rewrite algorithms into Maps and Reduces,
and your problem can be broken up into small pieces
solvable in parallel, then Hadoop’s MapReduce is the
way to go for a distributed problem solving approach to
large datasets
• Tried and tested in production
• Many implementation options
We can present the design and evaluation of a data aware
cache framework that requires minimum change to the
original MapReduce programming model for provisioning
incremental processing for Big data applications using the
MapReduce model.

FUTURE ENHANCEMENT:
Usually it is observed that the M a p R e d u c e framework
generates a large amount of intermediate data. Such
abundant information is thrown away after the tasks
finish, because MapReduce is unable to utilize
them.Therefore, we propose Dache, a data-aware
cache framework for big-data applications then its
tasks submit their intermediate results to the cache
manager. The task queries the cache manager before
executing the actual computing work. A novel cache
description scheme and a cache request and reply
protocol are designed.

REFERENCES
[1] Dhole Poonam B, Gunjal Baisa L, “Survey Paper on Traditional

Hadoop and Pipelined Map Reduce” International Journal of
Computational Engineering Research||Vol, 03||Issue, 12||

[2] Nilam Kadale, U. A. Mande, “Survey of Task Scheduling Method for
Mapreduce Framework in Hadoop” International Journal of Applied
Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of
Computer Science FCS, New York, USA 2nd National Conference

on Innovative Paradigms in Engineering & Technology (NCIPET
2013) – www.ijais.org

[3] Suman Arora, Dr.Madhu Goel, “Survey Paper on Scheduling in
Hadoop” International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 4, Issue 5, May 2014

[4] Wang, F. et al. Hadoop High Availability through Metadata
Replication. ACM (2009).

[5] B.Thirumala Rao, Dr. L.S.S.Reddy, “Survey on Improved
Scheduling in Hadoop MapReduce in Cloud Environments”,
International Journal of Computer Applications (0975 – 8887)
Volume 34– No.9, November 2011

[6] Amogh Pramod Kulkarni, Mahesh Khandewal, “Survey on Hadoop
and Introduction to YARN”, International Journal of Emerging
Technology and Advanced Engineering Website: www.ijetae.com
(ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 4, Issue
5, May 2014)

[7] Vishal S Patil, Pravin D. Soni, “HADOOP SKELETON & FAULT
TOLERANCE IN HADOOP CLUSTERS”, International Journal of
Application or Innovation in Engineering & Management
(IJAIEM)Volume 2, Issue 2, February 2013 ISSN 2319 - 4847

[8] Sanjay Rathe, “Big Data and Hadoop with components like Flume,
Pig, Hive and Jaql” International Conference on Cloud, Big Data
and Trust 2013, Nov 13-15, RGPV

[9] Yaxiong Zhao, Jie Wu and Cong Liu, “Dache: A Data Aware
Caching for Big-Data Applications Using the MapReduce
Framework”,TSINGHUA SCIENCE AND TECHNOLOGY
ISSNl1007-0214l 05/10l lpp39-50 Volume 19, Number 1, February
2014

[10] Parmeshwari P. Sabnis, Chaitali A.Laulkar , “SURVEY OF
MAPREDUCE OPTIMIZATION METHODS”, ISSN (Print): 2319-
2526, Volume -3, Issue -1, 2014

[11] Puneet Singh Duggal ,Sanchita Paul ,“ Big Data Analysis:
Challenges and Solutions”, International Conference on Cloud, Big
Data and Trust 2013, Nov 13-15, RGPV

[12] Chen He,Ying Lu,David Swanson, “Matchmaking: A New
MapReduce Scheduling Technique”, EECS Department, University
of California, Berkeley, Tech. Rep.,April 2009

[13] Apache HDFS. Available at http://hadoop.apache.org/hdfs
[14] Apache Hive. Available at http://hive.apache.org
[15] Apache HBase. Available at http://hbase.apache.org
[16] Apache Pig. Available at http://pig.apache.org

Vibhavari Chavan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7932-7939

www.ijcsit.com 7939

